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VISCOSITIES OF AQUEOUS SOLUTIONS
OF DIMETHYLSULFOXIDE, 1,4-DIOXANE
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Viscosities of the systems, water(W)+dimethylsulfoxide(DMSO), W + 1,4-dioxane

XN) and W+tetrahydrofuran(THF), are measured at temperatures ranging from
303.15-323.15K. Viscosities and excess viscosities are plotted against the mole fraction
of the organic solutes. On addition of solutes to water, viscosities first increase rapidly,
pass through maxima and then decline continuously until the pure state of solutes is
reached. Excess viscosities are found to be positive and large in magnitude and their
curves are similar to those of the viscosity curves. The ascending part of the viscosity
curves in the water-rich region is accounted for by both the hydrophobic effect of
forming cage structures around solutes and the hydrophilic effect forming H-bonds
between water and organic solutes. The descending part of the viscosity curves is ex-
plained by the continuous destruction of cages formed. The maxima are thought to be
due to competing processes of formation and destruction of cage structures.

Keywords. Excess viscosity; Dimethylsulfoxide; 1,4-dioxane and tetrahydrofuran

1. INTRODUCTION

This is a part of our ongoing research of the volumetric and
viscometric properties of aqueous solutions of organic substances
with particular reference to hydrophobic solutes. Literature survey
shows that, very limited studies are so far reported relevant to our
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present investigation. However, notable amongst them are the works
of Sacco et al. [1] and Tamura et al. [2] describing volumetric
and viscometric properties of DMSO+W. Here, we report on the
viscosities of aqueous systems formed by DMSO, DXN and THF
covering the whole range of composition with a view to understand the
nature of interaction of these substances with water. Apart from the
objective analysis of experimental results an additional but useful
outcome of this is the presentation of viscosity data of the systems
which we believe will make some contribution to database.

2. EXPERIMENTAL

The organic liquids under investigation were procured from Aldrich,
with the following quoted purity: dimethylsulfoxide (99.9%), 1,4-
dioxane (99.8%), and tetrahydrofuran (99.5%). The substances were
used without any further purification except that each of the liquids
was kept over molecular sieves (4A) for at least two weeks prior to use.
Thrice distilled water was used in the preparation of the solutions. The

TABLE I Density d(gcm~>) and viscosity n(mp) of pure liquids

DMSO DXN THF
T/K d 7 d n d ]
303.15  1.0896 17.979 1.0225 10.958 0.8759 4.496
(1.0910* (17.9)° (1.02225  (10.937)% (08773  (4.50)"
(1.0906)° (102223 (10.86)F
(1.090269)° (1.0224)
308.15  1.0847 16.092 1.0168 10.122 0.8702 4211

(10870 (16.05)" (1.01650° (10.112)% (08718  (4.277)
(L.0856)°> (159 (1.016892‘ (10.000)" (0.87033) (4.9

(1.0167)

31315 1.0797 14.492 1.0110 9.376 0.8649 4.066
(1.0806)° (1.01157) (0.86567)/
(1.08046)%

318.15  1.0748 13173 1.0052 8.714 0.8600  3.901

(13.100  (1.00514)° (0.86140)  (3.902)

32315 1.0698 12.214 0.9995 8.121 0.8541 3.696

(1.06062)* (1.00028)"

® Ref, [4]; ® Ref. [5]; © Ref. [2]; ¢ Ref. [6];  Ref. [7); | Ref. [8]; ® Ref. [9]; ® Ref. [10]; | Ref. [11]; Ref.
[12]; * Ref. [13].
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density was measured by using a Sml bicapillary pyknometer
previously calibrated by distilled water. An Ostwald U-tube
viscometer with sufficiently long efflux time was used in viscosity
measurement. The time of flow was recorded by a timer accurate up
to+0.1s. An analytical balance (Mettler Toledo) of accuracy +
0.0001 g was used in density measurement. For every measure-
ment, a thermostatic water bath controlled to £ 0.05° C was used. The
average uncertainty in the measured viscosity was estimated to be less
than 6 x 10~ 3mp.

3. RESULTS AND DISCUSSION

Densities(d) and viscosities(n) of pure liquids, dimethylsulfoxide
(DMSO0), 1,4-dioxane(DXN) and tetrahydrofuran(THF ), at different
temperatures are listed in Table I together with the available literature
data. The results show satisfactory agreement with literature values.
The viscosities and excess viscosities(rZ) are shown in Table II for all

35

30

%

5 A L n L i L | A L Y 1 i i A 1 A L '
0.0 01 02 03 04 05 06 07 08 09 1.0
X, (DMSO)
FIGURE 1 Viscosity as a function of mole fraction of DMSO of W 4+ DMSO system at

different temperatures. ¢ —303.15K; A-308.15K; m-313.15K; @ -318.15K;
% —323.15K.
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the systems. Viscosities vs. composition curves of the systems water
(W)+DMSO, W+DXN and W+THF at different temperatures
are represented by Figures 1-3, respectively. Viscosity data for W+
THF at 303.15K between 0.1-0.4 mole fraction of THF of Ref. [3]
as plotted in Figure 3 are found to fit well with our viscosity
curve. However, an examination of the figures reveals the following
characteristics:

(a) On addition of organic liquids to water, 1 increase quite rapidly,
pass through maxima and then decline continuously until the pure
state of the liquids is reached.

(b) Heights of the maxima are different for different systems and,
found to be in the order: W+DMSO > W+DXN > W+ THF.

(c) Maxima occur at ~ 0.35, 0.30 and 0.15 mole fractions of DMSO,
DXN and THF, respectively, and the positions of the maxima
virtually do not change with temperature.

18

16

14

12

n/mp

10

P QL SR I U N WA NUOU SR NI SO S VAU W S S S W S Y
00 041 02 03 04 05 06 07 08 09 10
X2 (DXN)

FIGURE 2 Viscosity as a function of mole fraction of DXN of the W+DXN system
at different temperatures. Symbols are the same as in Figure 1.
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16.0

14.0

12.0

10.0

n/mp

8.0

6.0

4.0

20 — N " N 2 2 " N L
00 01 02 03 04 05 06 07 08 09 1.0

Xz (THF)

FIGURE 3 Viscosity as a function of mole fraction of THF of W+ THF system at
different temperatures. Symbols are the same as in Figure 2. (O —data at 303.15K of Ref.

[3].

Excess viscosities were calculated using the following equation,

7 =n—exp(X; Innp +X; Inn) (1)

Here, 1 is the measured viscosity of the mixtures, 7, and 7, are the
viscosity of water and organic liquid, respectively, and X, and X, are
the corresponding mole fractions. All the excess viscosity curves were
fitted to the polynomial equation of the form,

n
T =XiX2) A(2X - 1) (2)
=0
Here, A, is the ith fitting coefficient and other terms have their usual
significance. Using n= 3, at each temperature values for four 4; and
the standard deviation, o, were obtained through the least squares
method. The fitting coefficients and the standard deviations are shown
in Table III. The plots of excess viscosities against mole fraction of the
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TABLE III Fitting coefficients 4, of Redlich—Kister Eq. (2) and standard deviation o
in mp for water -+ organic solute systems

System T /K Ay A Ay Aj o

W+DMSO  303.15 73.5524 —80.6153 -—18.8801 74.5907 0.5559
308.15 63.4411 —65.0943 —14.1706  60.1465 0.4328
313.15 552636 —54.0433 -~11.4830  52.0898 0.3212
318.15 477719 -—40.6543 -0.6146  23.7051 0.3135
323.15 423005 —37.9606 —7.6876  36.9387 0.1941

W+DXN 303.15 214732 —34.9809  25.5255 —7.8214 0.1331

308.15 19.0294 —30.1940  21.3994 —6.3860 0.1114
313.15 169160 —-26.1202  18.2309 —5.5611 0.0904
318.15 15.1380 —22.7864 15.5760 —4.6813 0.0749
323.15 13.5674 —19.9555 134112 —4.0456 0.0596
W+THF 303.15 9.3312 -26.5080 439719 —34.3814 0.1603
308.15 84685 -—22.8858  35.7569 —27.2233 0.1183
313.15 7.7907 -—-20.6907  28.6866 — 18.9805 0.1057
318.15 69738 —17.7184 247473 -—17.7165 0.0527
323.15 64371 -16.1028  21.0480 —13.5966 0.0425

25

2

15

"/ mp

L
10

0

0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0
X, (DMSO)

FIGURE 4 Excess Viscosity vs. composition curves of the W+DMSO system at
different temperatures. Symbols are the same as in Figure 1.

organic solutes for the systems, DMSO+W, DXN +W and W+THF,
are shown in Figures 4-6, respectively. For comparison 7 vs. com-
position at 303.15K are plotted in Figure 7. An examination of
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10.0

8.0

6.0

n®/mp

40

20

00 M-ttt
00 0.4 02 03 04 05 08 07 08 09 10

X2 (DXN)

FIGURE 5 Excess Viscosity vs. composition curves for the W+DXN system at
different temperatures. Symbols are the same as in Figure 1.

the curves shows that:

(@) 5F s are positive for all the systems in the whole range of com-
position. The values are relatively high and they decrease with
the rise of temperature.

(b) There are well-defined maxima occurring in the water-rich regions
of the systems. The maxima for W+DMSO, W+DXN and
W+THF appear at ~ 0.35, 0.25 and 0.15mole fractions, re-
spectively, of the solutes. The maxima do not change their
positions noticeably with the change of temperature.

The initial rise of viscosity, existence of maxima in the water-rich
region and continuous decline of viscosity afterwards, are typical
characteristics of the viscosity of aqueous solutions of well-known
hydrophobic solutes, such as, acetone [14], mono-and di-substituted
amides [15, 16], alcohols [17—19], glycol ethers [20], n-alkoxyethanols
[21], amines [22], etc. Two effects, (i) hydrophobic hydration and (ii)
hydrophilic bonding, are considered to be the primary reasons for the
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n/mp

00 01 02 03 04 05 06 07 08 09 1.0
Xz (THF)

FIGURE 6 Excess Viscosity vs. composition curves of the W 4+ THF system at different
temperatures. Symbols are the same as in Figure 1.

ascending part of viscosity of these systems. In the dilute regions,
where water exists in large concentration, solute molecules are con-
sidered to be surrounded by highly structured water molecules
forming cages known as hydrophobic hydration. As this process leads
to the decrease of entropy, it is not thermodynamically favourable.
The hydrophobic hydration always requires large amounts of water,
and therefore, it occurs only in the water-rich or moderately water-rich
regions of solutions. However, when the solute is gradually added, a
composition is reached when the number of water molecules available
is not sufficient enough for the hydration to proceed further. Beyond
this concentration, hydrophobic bonds forming the cage structures are
broken down continuously giving rise to the reformation of normal
water structures. This accounts for almost a monotonous decline in
viscosity. The maximum in the viscosity curve is thought to be the
result of an equilibrium state of two competing processes, the for-
mation and the destruction of the cage structures. The characteristic
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n/mp

00 01 02 03 04 05 06 07 08 08 10
X2 (SOLUTE)

FIGURE 7 Comparison of Viscosity as a function of mole fraction of the organic
solute. ¢ —W+DMSO; A —W+DXN; @ -W+THF.

features of the excess viscosity curves are basically similar to those of
viscosity curves. The interpretation put so far for the observed
viscosity behaviour may well be applied to the excess viscosity curves.
Recent studies of volumetric and viscometric properties by Sacco and
Matteoli [1] and the nuclear magnetic relaxation studies by Holz et al.
[23] on the aqueous solutions of DMSO have unambiguously indicated
to some moderate to weak hydrophobicity of DMSO. Again, large
negative excess enthalpies [24] of the mixtures of DMSO and water
suggest for strong hydrophilic interaction of DMSO. From the excess
volume studies on W+ DMSO Tamura et al. [2] concluded that, in the
water-rich region water molecules are reoriented to form hydrophobic
hydrogen bonds around the two methyl groups of a DMSO molecule.
Moreover, hydrophobic interaction studies on a large number of
aqueous solutions of alkan-1,2-diols by Andini et al. [25] strongly
suggest that the methyl group is the most potent hydrophobic group.
However, hydrophobicity of the methyl groups of the particular case
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of DMSO is thought to be reduced substantially due to the close
proximity of the hydrophilic > S=0 group. A comprehensive paper
on water shell stabilization by interstitial non-electrolytes by Glew,
Mak and Rath [26] and the references therein explicitly pointed to the
formation of solid clathrates by THF and DXN, giving unambiguous
evidence to the cavity solution model. The authors concluded further
that, DXN and THF form relatively weak H-bonds with water as in-
dicated by the n.m.r. spectroscopy and by the endothermic heats of
mixing of the dilute solutions of water.

4. CONCLUSION

All the three aqueous systems of DMSO, DXN and THF exhibit
similar viscosity behaviour. DMSO is thought to be rather a mod-
erately or weakly hydrophobic but strongly hydrophilic solute.
The other two solutes DXN and THF on the other hand are supposed
to be much strongly hydrophobic but relatively weakly hydrophilic
towards W. The ascending parts of viscosity curves of these systems
are accounted for by both hydrophobic and hydrophilic effects. The
maximum in viscosity curves is thought to be the resultant of two
competing processes—one the formation and the other the destruction
of the cage structures around the hydrocarbon moieties of organic
solutes. Declining part of the viscosity following the maximum, on the
other hand, is due to the continuous break down of cages formed as
well as simultaneous reformation of the normal water structures.
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